\(\int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx\) [22]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 34, antiderivative size = 72 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=\frac {a B x}{c^2}-\frac {a (A+7 B) \cos (e+f x)}{3 c^2 f (1-\sin (e+f x))}+\frac {2 a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^2} \]

[Out]

a*B*x/c^2-1/3*a*(A+7*B)*cos(f*x+e)/c^2/f/(1-sin(f*x+e))+2/3*a*(A+B)*cos(f*x+e)/f/(c-c*sin(f*x+e))^2

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3046, 2936, 2814, 2727} \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=-\frac {a (A+7 B) \cos (e+f x)}{3 c^2 f (1-\sin (e+f x))}+\frac {2 a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^2}+\frac {a B x}{c^2} \]

[In]

Int[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^2,x]

[Out]

(a*B*x)/c^2 - (a*(A + 7*B)*Cos[e + f*x])/(3*c^2*f*(1 - Sin[e + f*x])) + (2*a*(A + B)*Cos[e + f*x])/(3*f*(c - c
*Sin[e + f*x])^2)

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2936

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[2*(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3))), x] + Dist[
1/(b^3*(2*m + 3)), Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d*(2*m + 3)*Sin[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -3/2]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = (a c) \int \frac {\cos ^2(e+f x) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^3} \, dx \\ & = \frac {2 a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^2}+\frac {a \int \frac {-A c-4 B c-3 B c \sin (e+f x)}{c-c \sin (e+f x)} \, dx}{3 c^2} \\ & = \frac {a B x}{c^2}+\frac {2 a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^2}-\frac {(a (A+7 B)) \int \frac {1}{c-c \sin (e+f x)} \, dx}{3 c} \\ & = \frac {a B x}{c^2}+\frac {2 a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^2}-\frac {a (A+7 B) \cos (e+f x)}{3 f \left (c^2-c^2 \sin (e+f x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(160\) vs. \(2(72)=144\).

Time = 6.01 (sec) , antiderivative size = 160, normalized size of antiderivative = 2.22 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=-\frac {a \left (-9 B f x \cos \left (\frac {f x}{2}\right )-6 (A+3 B) \cos \left (e+\frac {f x}{2}\right )+2 A \cos \left (e+\frac {3 f x}{2}\right )+14 B \cos \left (e+\frac {3 f x}{2}\right )+3 B f x \cos \left (2 e+\frac {3 f x}{2}\right )+24 B \sin \left (\frac {f x}{2}\right )+9 B f x \sin \left (e+\frac {f x}{2}\right )+3 B f x \sin \left (e+\frac {3 f x}{2}\right )\right )}{6 c^2 f \left (\cos \left (\frac {e}{2}\right )-\sin \left (\frac {e}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

[In]

Integrate[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^2,x]

[Out]

-1/6*(a*(-9*B*f*x*Cos[(f*x)/2] - 6*(A + 3*B)*Cos[e + (f*x)/2] + 2*A*Cos[e + (3*f*x)/2] + 14*B*Cos[e + (3*f*x)/
2] + 3*B*f*x*Cos[2*e + (3*f*x)/2] + 24*B*Sin[(f*x)/2] + 9*B*f*x*Sin[e + (f*x)/2] + 3*B*f*x*Sin[e + (3*f*x)/2])
)/(c^2*f*(Cos[e/2] - Sin[e/2])*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.64 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.11

method result size
risch \(\frac {a B x}{c^{2}}-\frac {2 \left (3 A a \,{\mathrm e}^{2 i \left (f x +e \right )}-12 i B a \,{\mathrm e}^{i \left (f x +e \right )}+9 B a \,{\mathrm e}^{2 i \left (f x +e \right )}-a A -7 B a \right )}{3 \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )^{3} f \,c^{2}}\) \(80\)
derivativedivides \(\frac {2 a \left (B \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {A -B}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {4 A +4 B}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {4 A +4 B}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}\right )}{f \,c^{2}}\) \(87\)
default \(\frac {2 a \left (B \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {A -B}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {4 A +4 B}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {4 A +4 B}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}\right )}{f \,c^{2}}\) \(87\)
parallelrisch \(-\frac {2 \left (-\frac {B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) f x}{2}+\left (\frac {3}{2} f x B +A -B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+B \left (-\frac {3 f x}{2}+4\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+\frac {f x B}{2}+\frac {A}{3}-\frac {5 B}{3}\right ) a}{f \,c^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}\) \(90\)
norman \(\frac {\frac {a x B \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}-\frac {2 a A -10 B a}{3 c f}-\frac {a x B}{c}-\frac {16 B a \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}-\frac {8 B a \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}-\frac {8 B a \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{c f}-\frac {\left (2 a A -2 B a \right ) \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c f}-\frac {\left (10 a A -26 B a \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 c f}-\frac {\left (14 a A -22 B a \right ) \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 c f}+\frac {3 a x B \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{c}-\frac {5 a x B \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}+\frac {7 a x B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}-\frac {7 a x B \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}+\frac {5 a x B \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}-\frac {3 a x B \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{c}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2} c \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}\) \(334\)

[In]

int((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

a*B*x/c^2-2/3*(3*A*a*exp(2*I*(f*x+e))-12*I*B*a*exp(I*(f*x+e))+9*B*a*exp(2*I*(f*x+e))-a*A-7*B*a)/(exp(I*(f*x+e)
)-I)^3/f/c^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (67) = 134\).

Time = 0.26 (sec) , antiderivative size = 162, normalized size of antiderivative = 2.25 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=-\frac {6 \, B a f x - {\left (3 \, B a f x + {\left (A + 7 \, B\right )} a\right )} \cos \left (f x + e\right )^{2} + 2 \, {\left (A + B\right )} a + {\left (3 \, B a f x + {\left (A - 5 \, B\right )} a\right )} \cos \left (f x + e\right ) - {\left (6 \, B a f x - 2 \, {\left (A + B\right )} a + {\left (3 \, B a f x - {\left (A + 7 \, B\right )} a\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{3 \, {\left (c^{2} f \cos \left (f x + e\right )^{2} - c^{2} f \cos \left (f x + e\right ) - 2 \, c^{2} f + {\left (c^{2} f \cos \left (f x + e\right ) + 2 \, c^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

-1/3*(6*B*a*f*x - (3*B*a*f*x + (A + 7*B)*a)*cos(f*x + e)^2 + 2*(A + B)*a + (3*B*a*f*x + (A - 5*B)*a)*cos(f*x +
 e) - (6*B*a*f*x - 2*(A + B)*a + (3*B*a*f*x - (A + 7*B)*a)*cos(f*x + e))*sin(f*x + e))/(c^2*f*cos(f*x + e)^2 -
 c^2*f*cos(f*x + e) - 2*c^2*f + (c^2*f*cos(f*x + e) + 2*c^2*f)*sin(f*x + e))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 700 vs. \(2 (65) = 130\).

Time = 2.03 (sec) , antiderivative size = 700, normalized size of antiderivative = 9.72 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=\begin {cases} - \frac {6 A a \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} - \frac {2 A a}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} + \frac {3 B a f x \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} - \frac {9 B a f x \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} + \frac {9 B a f x \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} - \frac {3 B a f x}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} + \frac {6 B a \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} - \frac {24 B a \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} + \frac {10 B a}{3 c^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} - 9 c^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 c^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} - 3 c^{2} f} & \text {for}\: f \neq 0 \\\frac {x \left (A + B \sin {\left (e \right )}\right ) \left (a \sin {\left (e \right )} + a\right )}{\left (- c \sin {\left (e \right )} + c\right )^{2}} & \text {otherwise} \end {cases} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**2,x)

[Out]

Piecewise((-6*A*a*tan(e/2 + f*x/2)**2/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*
tan(e/2 + f*x/2) - 3*c**2*f) - 2*A*a/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*t
an(e/2 + f*x/2) - 3*c**2*f) + 3*B*a*f*x*tan(e/2 + f*x/2)**3/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 +
 f*x/2)**2 + 9*c**2*f*tan(e/2 + f*x/2) - 3*c**2*f) - 9*B*a*f*x*tan(e/2 + f*x/2)**2/(3*c**2*f*tan(e/2 + f*x/2)*
*3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/2 + f*x/2) - 3*c**2*f) + 9*B*a*f*x*tan(e/2 + f*x/2)/(3*c**2
*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/2 + f*x/2) - 3*c**2*f) - 3*B*a*f*x/(3*c
**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/2 + f*x/2) - 3*c**2*f) + 6*B*a*tan(e
/2 + f*x/2)**2/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/2 + f*x/2) - 3*c*
*2*f) - 24*B*a*tan(e/2 + f*x/2)/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/
2 + f*x/2) - 3*c**2*f) + 10*B*a/(3*c**2*f*tan(e/2 + f*x/2)**3 - 9*c**2*f*tan(e/2 + f*x/2)**2 + 9*c**2*f*tan(e/
2 + f*x/2) - 3*c**2*f), Ne(f, 0)), (x*(A + B*sin(e))*(a*sin(e) + a)/(-c*sin(e) + c)**2, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 456 vs. \(2 (67) = 134\).

Time = 0.32 (sec) , antiderivative size = 456, normalized size of antiderivative = 6.33 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=\frac {2 \, {\left (B a {\left (\frac {\frac {9 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {3 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - 4}{c^{2} - \frac {3 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {c^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {3 \, \arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{c^{2}}\right )} - \frac {A a {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {3 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - 2\right )}}{c^{2} - \frac {3 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {c^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {A a {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}}{c^{2} - \frac {3 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {c^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {B a {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}}{c^{2} - \frac {3 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {c^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}\right )}}{3 \, f} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

2/3*(B*a*((9*sin(f*x + e)/(cos(f*x + e) + 1) - 3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 4)/(c^2 - 3*c^2*sin(f*x
 + e)/(cos(f*x + e) + 1) + 3*c^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - c^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3
) + 3*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/c^2) - A*a*(3*sin(f*x + e)/(cos(f*x + e) + 1) - 3*sin(f*x + e)^2
/(cos(f*x + e) + 1)^2 - 2)/(c^2 - 3*c^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*c^2*sin(f*x + e)^2/(cos(f*x + e) +
 1)^2 - c^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) + A*a*(3*sin(f*x + e)/(cos(f*x + e) + 1) - 1)/(c^2 - 3*c^2*si
n(f*x + e)/(cos(f*x + e) + 1) + 3*c^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - c^2*sin(f*x + e)^3/(cos(f*x + e) +
 1)^3) + B*a*(3*sin(f*x + e)/(cos(f*x + e) + 1) - 1)/(c^2 - 3*c^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*c^2*sin(
f*x + e)^2/(cos(f*x + e) + 1)^2 - c^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3))/f

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.21 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=\frac {\frac {3 \, {\left (f x + e\right )} B a}{c^{2}} - \frac {2 \, {\left (3 \, A a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 3 \, B a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 12 \, B a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + A a - 5 \, B a\right )}}{c^{2} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3}}}{3 \, f} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

1/3*(3*(f*x + e)*B*a/c^2 - 2*(3*A*a*tan(1/2*f*x + 1/2*e)^2 - 3*B*a*tan(1/2*f*x + 1/2*e)^2 + 12*B*a*tan(1/2*f*x
 + 1/2*e) + A*a - 5*B*a)/(c^2*(tan(1/2*f*x + 1/2*e) - 1)^3))/f

Mupad [B] (verification not implemented)

Time = 12.13 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.83 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^2} \, dx=\frac {B\,a\,x}{c^2}-\frac {\left (\frac {a\,\left (6\,A-6\,B+9\,B\,\left (e+f\,x\right )\right )}{3}-3\,B\,a\,\left (e+f\,x\right )\right )\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+\left (\frac {a\,\left (24\,B-9\,B\,\left (e+f\,x\right )\right )}{3}+3\,B\,a\,\left (e+f\,x\right )\right )\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+\frac {a\,\left (2\,A-10\,B+3\,B\,\left (e+f\,x\right )\right )}{3}-B\,a\,\left (e+f\,x\right )}{c^2\,f\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )-1\right )}^3} \]

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x)))/(c - c*sin(e + f*x))^2,x)

[Out]

(B*a*x)/c^2 - ((a*(2*A - 10*B + 3*B*(e + f*x)))/3 + tan(e/2 + (f*x)/2)^2*((a*(6*A - 6*B + 9*B*(e + f*x)))/3 -
3*B*a*(e + f*x)) + tan(e/2 + (f*x)/2)*((a*(24*B - 9*B*(e + f*x)))/3 + 3*B*a*(e + f*x)) - B*a*(e + f*x))/(c^2*f
*(tan(e/2 + (f*x)/2) - 1)^3)